Ultra-High Resolution 3D Printing at the Micro-Scale with Nanoscribe

AM Strategies Medical & Dental Summit – Save 17% through 12/14

The Voice of 3D Printing / Additive Manufacturing

3D Printing for Prototyping and Production

Beginner Design for 3D Printing – June 2017

Advanced Design for 3D Printing – June 2017

Beginner Design for 3D Printing – April 2017

Advanced Design for 3D Printing – April 2017

Formlabs Whitepaper: Injection Molding from 3D Printed Molds

Stratasys: How Additive and Traditional Manufacturing Mix

Inquire to promote your organizations White Paper

Ultra-High Resolution 3D Printing at the Micro-Scale with Nanoscribe

byScott J GrunewaldMar 3, 20163D Printers3D PrintingBusiness

Despite what the smartphone wars tell us, the trend of making things smaller has been almost continuous since the very first electronics were developed. It just makes sense to make things smaller; it allows them to be more portable, and on some level even more durable and damage-resistant. Advances in consumer products like digital cameras and various varieties of sensors have given designers the option to dramatically shrink many of those components. Sadly, it seems almost faster than the technologies used to manufacture those tiny parts can actually keep up. Current rapid prototyping technologies are simply incapable of keeping up with shrinking micro-optical elements like lenses or lens arrays and are unable to produce parts with a high enough resolution to work properly.

Photonic Professional GT High-resolution 3D printer for the fabrication of micrometer and mesoscale structures

Unfortunately the inability to prototype at that small of a scale makes the design and manufacturing of micro-parts quite expensive, often prohibitively so. The inability to pace manufacturing technologies with miniaturized technology actually slows down the advancement of new, vital technologies. Thanks to recent advancements in 3D printing technology from companies likeNanoscribethat is rapidly changing. The German companysPhotonic Professional GT3D printer is a state-of-the-art ultra-high-resolution laser lithography 3D printer that is capable of layer thicknesses and detail sizes well below 1 micrometer.

The Nanoscribe technology is essentially a micro-scale laser that 3D prints three dimensional constructs, almost like a very small pen, only it writes in photosensitive material at the nanoscale. The process is very similar to direct laser writing but the Nanoscribe process is capable of much more detail and precision. Primarily because of the near infrared laser, which is pulsed by the femtosecond so polymerization only occurs at the targeted area. Due to this pulsing, the photoreactive materials will not also harden along the entire path of the laser, providing an astronomical jump in fine detail and precision.

3D printed lens mounts for micro-optical systems 2.4 mm

The laser beam itself has a computer-controlled beam guidance system that translates a 3D CAD model directly into 3D structures of almost any complexity at any scale. Essentially it can fabricate microstructures as small as 500 nanometers, including those with complex geometries and support structures, at extremely high resolutions. The 3D printing technology that Nanoscribe developed has allowed sub-micron parts to be fabricated with geometries and internal structures that would be completely impossible to create using standard micro-scale manufacturing techniques.

One of the most innovative uses for the Photonic Professional GT system is micro rapid prototyping. The Nanoscribe system has a much higher resolution than micro-stereolithography, so it opens up micro-prototyping to entirely new industries at scales that were previously unreachable. While developers of products are in the prototyping phase of the typical development cycle for something like a micro-optical system, it is often nearly impossible to fully visualize the final configuration. The ability to rapidly prototype elements for applications like lens holders or mounts for miniaturized optical systems can dramatically reduce both the production cost and the development time of these high tech products. That means optical technology can be produced cheaply, sold for lower prices and used in new and innovative products.

Nanoscribe is a world leader in the development and manufacturing of 3D printing technology that is capable of working at the nano, micro, and mesoscale. Their two-photon polymerization 3D printers are used throughout the research and scientific community, as well as manufacturing and industrial fabrication companies of all kinds. Their technology is regularly used to fabricate micro-optical components and microfluidic elements like filters or mixers on microfluidic chips. It is also used to demonstrate photonics, printing highly functional mechanical microstructures and the construction of cellular scaffolding and biomimetics. You can find out more over on the Nanoscribe website. Discuss in theNanoscribe 3D Printer Technology forumover at .

Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.

This field is for validation purposes and should be left unchanged.

This iframe contains the logic required to handle Ajax powered Gravity Forms.

Tagged with:light cured resinmicro-scale 3d printingmicro-scale rapid prototypingnano-scale 3d printingnanoscribePhotonic Professional GTtwo-photon polymerizationuv laser printing

ORNL Reaching Out to Future Scientists with Worlds Smallest 3D Printed Fidget Spinner

Nanoscribe Combines 3D Micro-Printing Technology and Conventional Series Production

3D Printing News Briefs: October 27, 2017

Researchers Develop New Water-Soluble Photoinitiators for 3D Printing

Researchers at Tsinghua University Describe How Nanodroplets Deform Upon Surface Strike, Potential to Improve 3D Printing

Nanoscribe 3D Prints Micro-Optics at the NanoscaleView By CategoriesView By CategoriesSelect Category3D Design (5,635)3D Printed Art (734)3D Printed Guns (82)3D Printer Reviews (18)3D Printers (2,969)3D Printing (11,902)3D Printing and Robotics Jobs (19)3D Printing Materials (1,634)3D Scanning (610)3D Software (1,082)Additive Manufacturing Research (5)Aerospace 3D Printing (285)Business (3,631)Editorials / Opinions (287)Education (375)Exclusive Interviews (331)Featured Stories (2)Medical 3D Printing (1,425)Metal 3D Printing (509)Popular Stories (90)Robotics (276)Science & Technology (673)Sponsored (129)Virtual Reality (163)

Subscribe to 3DPrint.com Email Newsletter

Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.

This field is for validation purposes and should be left unchanged.

2017 3D Printer Buyers Guide

2017 3D Scanner Buyers Guide

Anything Related to the 3D Printing Industry which doesnt belong in the our other folders goes here.3D Printers (Hardware)

Discuss the various 3D Printers on the Market. Please make sure there isnt already a folder for the printer you wish to discuss in our Specific 3D Printer Folders.3D Printer Parts, Filament & Materials

Discussion related to 3D Printer parts, such as hot ends, extruders, and anything else you may want to discuss related to printer parts, as well as filament, resin, and sintering powder.Inside 3D Printing EventsSan DiegoDecember 4-5, 2017SingaporeFebruary 6-7, 2018DsseldorfFebruary 21-22, 2018SydneyMay 9-11, 2018São PauloJune 11-12, 2018SeoulJune 27-29, 2018New YorkOctober 30-31, 2018TokyoOctober 2018